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Chainer Chemistry is a collection of tools to train and run neural networks for tasks in biology and chemistry using
Chainer .
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CHAPTER 1

Features

• State-of-the-art deep learning neural network models (especially graph convolutions) for chemical molecules
(NFP, GGNN, Weave, SchNet etc.)

• Preprocessors of molecules tailored for these models

• Parsers for several standard file formats (CSV, SDF etc.)

• Loaders for several well-known datasets (QM9, Tox21 etc.)

Introductory to deep learning for molecules and Chainer Chemistry is also available here (SlideShare).

1.1 Installation

1.1.1 Dependency

Following packages are required to install Chainer Chemistry and are automatically installed when you install the
library by pip command.

• chainer

• pandas

• scikit-learn

• tqdm

Also, it uses following library, which you need to manually install.

• rdkit

See the official document for installation. If you have setup anaconda, you may install rdkit by following com-
mand:

$ conda install -c rdkit rdkit
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1.1.2 Install via pip

It can be installed by pip command:

$ pip install chainer-chemistry

1.1.3 Install from source

The tarball of the source tree is available via pip download chainer-chemistry. You can use setup.py
to install Chainer Chemistry from the tarball:

$ tar zxf chainer-chemistry-x.x.x.tar.gz
$ cd chainer-chemistry-x.x.x
$ python setup.py install

Install from the latest source from the master branch:

$ git clone https://github.com/pfnet-research/chainer-chemistry.git
$ pip install -e chainer-chemistry

1.1.4 Run example training code

The official repository provides examples of training several graph convolution networks. The code can be obtained
by cloning the repository:

$ git clone https://github.com/pfnet-research/chainer-chemistry.git

The following code is how to train Neural Fingerprint (NFP) with the Tox21 dataset on CPU:

$ cd chainer-chemistry/examples/tox21
$ python train_tox21.py --method=nfp --gpu=-1 # set --gpu=0 if you have GPU

1.2 Tutorial

1.2.1 Abstract

In this tutorial, we predict Highest Occupied Molecular Orbital (HOMO) level of the molecules in QM9 dataset [1][2]
by Neural Finger Print (NFP) [3][4]. We concentrate on exaplaining usage of Chainer Chemistry briefly and do not
look over the detail of NFP implementation.

1.2.2 Tested Environment

• Chainer Chemistry >= 0.0.1 (See Installation)

• Chainer >= 2.0.2

• CUDA == 8.0, CuPy >= 1.0.3 (Required only when using GPU)

– For CUDA 9.0, CuPy >= 2.0.0 is required

• sklearn >= 0.17.1 (Only for preprocessing)
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1.2.3 QM9 Dataset

QM9 is a publicly available dataset of small organic molecule structures and their simulated properties for data driven
researches of material property prediction and chemical space exploration. It contains 133,885 stable small organic
molecules made up of CHONF. The available properties are geometric, energetic, electronic, and thermodynamic ones.

In this tutorial, we predict HOMO level in the properties. Physically, we need quantum chemical calculations to
compute HOMO level. From mathematical viewpoint it requires a solution of an internal eigenvalue problem for a
Hamiltonian matrix. It is a big challenge to predict HOMO level accurately by a neural network, because the network
should approximate both calculating the Hamiltonian matrix and solving the internal eigenvalue problem.

1.2.4 HOMO prediction by NFP

At first you should clone the library repository from GitHub. There is a Python script examples/qm9/
train_qm9.py in the repository. It executes a whole training procedure, that is, downloads QM9 dataset, preprocess
it, define an NFP model and run trainning on them.

Execute the following commands on a machine satisfying the tested environment in environment.

~$ git clone git@github.com:pfnet-research/chainer-chemistry.git
~$ cd chainer-chemistry/examples/qm9/

Hereafter all shell commands should be executed in this directory.

If you are a beginner for Chainer, Chainer handson will greatly help you. Especially the explanation of inclusion
relationship of Chainer classes in Sec. 4 in Chap. 2 is helpful when you read the sample script.

Next the dataset preparation part and the model definition part in train_qm9.py are explained. If you are not
interested in them, skip Dataset Preparation and Model Definition, and jump to Run.

Dataset Preparation

Chainer Chemistry accepts the same dataset type with Chainer, such as chainer.datasets.SubDataset. In
this section we learn how to download QM9 dataset and use it as a Chainer dataset.

The following Python script downloads and saves the dataset in .npz format.

#!/usr/bin/env python
from chainer_chemistry import datasets as D
from chainer_chemistry.dataset.preprocessors import preprocess_method_dict
from chainer_chemistry.datasets import NumpyTupleDataset

preprocessor = preprocess_method_dict['nfp']()
dataset = D.get_qm9(preprocessor, labels='homo')
cache_dir = 'input/nfp_homo/'
os.makedirs(cache_dir)
NumpyTupleDataset.save(cache_dir + 'data.npz', dataset)

The last two lines save the dataset to input/nfp_homo/data.npz and we need not to download the dataset next
time.

The following Python script read the dataset from the saved .npz file and split the data points into training and
validation sets.
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#!/usr/bin/env python
from chainer.datasets import split_dataset_random
from chainer_chemistry import datasets as D
from chainer_chemistry.dataset.preprocessors import preprocess_method_dict
from chainer_chemistry.datasets import NumpyTupleDataset

cache_dir = 'input/nfp_homo/'
dataset = NumpyTupleDataset.load(cache_dir + 'data.npz')
train_data_ratio = 0.7
train_data_size = int(len(dataset) * train_data_ratio)
train, val = split_dataset_random(dataset, train_data_size, 777)
print('train dataset size:', len(train))
print('validation dataset size:', len(val))

The function split_dataset_random() returns a tuple of two chainer.datasets.SubDataset objects
(training and validation set). Now you have prepared training and validation data points and you can construct
chainer.iterator.Iterator objects, needed for updaters in Chainer.

Model Definition

In Chainer, a neural network model is defined as a chainer.Chain object.

Graph convolutional networks such as NFP are generally connection of graph convolution layers and multi perceptron
layers. Therefore it is convenient to define a class which inherits chainer.Chain and compose two chainer.
Chain objects corresponding to the two kind of layers.

Execute the following Python script and check you can define such a class. NFP and MLP are already defined
chainer.Chain classes.

#!/usr/bin/env python
import chainer
from chainer_chemistry.models import MLP, NFP

class GraphConvPredictor(chainer.Chain):

def __init__(self, graph_conv, mlp):
super(GraphConvPredictor, self).__init__()
with self.init_scope():

self.graph_conv = graph_conv
self.mlp = mlp

def __call__(self, atoms, adjs):
x = self.graph_conv(atoms, adjs)
x = self.mlp(x)
return x

n_unit = 16
conv_layers = 4
model = GraphConvPredictor(NFP(n_unit, n_unit, conv_layers),

MLP(n_unit, 1))

Run

You have defined the dataset and the NFP model on Chainer. There are no other procedures specific to Chainer
Chemistry. Hereafter you should just follow the usual procedures in Chainer to execute training.
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The sample script examples/qm9/train_qm9.py contains all the procedures and you can execute training just
by invoking the script. The following command starts training for 20 epochs and reports loss and accuracy during
training. They are reported for each of main (dataset for training) and validation (dataset for validation).

The --gpu 0 option is to utilize a GPU with device id = 0. If you do not have a GPU, set --gpu -1 or just drop
--gpu 0 to use CPU for all the calculation. In most cases, calculation with GPU is much faster than that only with
CPU.

~/chainer-chemistry/examples/qm9$ python train_qm9.py --method nfp --label homo --gpu
→˓0 # If GPU is unavailable, set --gpu -1

Train NFP model...
epoch main/loss main/accuracy validation/main/loss validation/main/accuracy
→˓ elapsed_time
1 0.746135 0.0336724 0.680088 0.0322597
→˓ 58.4605
2 0.642823 0.0311715 0.622942 0.0307055
→˓ 113.748
(...)
19 0.540646 0.0277585 0.532406 0.0276445
→˓ 1052.41
20 0.537062 0.0276631 0.551695 0.0277499
→˓ 1107.29

After finished, you will find log file in result/ directory.

Evaluation

In the loss and accuracy report, we are mainly interested in validation/main/accuracy. Although it decreases
during training, the accuracy field is actually mean absolute error. The unit is Hartree. Therefore the last line means
validation mean absolute error is 0.0277499 Hartree. See scaled_abs_error() function in train_qm9.py for
the detailed definition of mean absolute error.

You can also train other type models like GGNN, SchNet or WeaveNet, and other target values like LUMO, dipole
moment and internal energy, just by changing --model and --label options, respectively. See output of python
train_qm9.py --help.

1.2.5 Using your own dataset

You can use your own dataset in Chainer Chemistry. example/own_dataset shows an example.

1.2.6 Reference

[1] L. Ruddigkeit, R. van Deursen, L. C. Blum, J.-L. Reymond, Enumeration of 166 billion organic small molecules
in the chemical universe database GDB-17, J. Chem. Inf. Model. 52, 2864–2875, 2012.

[2] R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Quantum chemistry structures and properties of 134
kilo molecules, Scientific Data 1, 140022, 2014.

[3] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R. P.
(2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information
processing systems (pp. 2224-2232).

[4] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum
chemistry. arXiv preprint arXiv:1704.01212.
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1.3 Contribution guide

We welcome any type of contribution that helps to improve and promote Chainer Chemistry. Typical contribution
includes:

• Send pull requests (PRs) to the repository (We recommend developers making PRs to read the Development
policy before starting to implement).

• Report bugs or problems as issues.

• Send questions to developer community sites like Stackoverflow or Chainer Slack (en, jp).

• Write a blog post about Chainer Chemistry or its use case.

1.4 Development policy

In this section, we describe the development policy that the core developers follow. Developers who are thinking to
send PRs to the repository are encouraged to read the following sections before starting implementation.

1.4.1 Versioning policy

Basically, we follow the semantic versioning v2.0.0. In Chainer Chemistry, public APIs in the sense of semantic
versioning are ones in the document.

We follow these rules about versioning during the major version zero in addition to ones described in the the semantic
versioning:

• We do not plan any scheduled releases.

• We do not plan any pre releases.

• We release the minor version when the core development team agrees. Typically, we do so when (1) sufficient
number of features are added since the last minor release (2) the latest release cannot run the example code in
the master branch of the repository (3) critical bugs are found. But we are not restricted to them.

• If we find critical bugs, we should release a patch version or a minor version that fixes them. The core develop-
ment team will determine which version to release.

We do not have a concrete plan about versioning strategy after v1.0.0.

1.4.2 Compatibiity policy

As an immediate consequence of the semantic versioning, we may break compatibility of public APIs including
addition, deletion, and changes in their semantics anytime in the major version zero. Since APIs of Chainer Chemistry
are still immature and unstable, we expect introduction of new features can sometime involve compatibility break. If
we are faced with a dilemma between cost for backward compatibility and benefit of new features, we are likely to
give up the former because we want to place importance on introducing new features as soon as possible. Of course,
we care backward compatibility whenever it is easy and low-cost.

Like ChainerCV, Chainer Chemistry provides several off-the-shelf deep learning models (e.g. Neural Finger Print)
whose papers are available in such as arXiv or conferences related to machine learning. Although, most of published
papers reports evaluation results of the models with publicly available datasets, we do NOT guarantee the reproducibil-
ity of experiments in the papers.
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At some point, coding examples in the master branch of the official repository may not work even with the latest
release. In that case, users are recommended to either use the example code of the latest release or update the library
code to the master branch.

As of v0.3.0, we have introduced BaseForwardModel, which provides methods for serializing itself to and loading
from a file. As these methods intenally use pickle, portability of the class depends on that of pickling. Especially,
serialized instances of BaseForwardModel made with older Chainer Chemistry may not be loaded with newer one,
partly because we may change their internal structures for refactoring, performance improvement, and so on. See the
document of BaseForwardModel and their subclasses (e.g. Classifier, Regressor).

1.4.3 Branch strategy

The official repository of Chainer Chemistry is https://github.com/pfnet-research/chainer-chemistry. We use the mas-
ter branch of the repository for development. Therefore, developer who makes PRs should send them to the master
branch.

During major version zero, we do not maintain any released versions. When a bug is found, changes for the bug should
be merged to the next version (either minor or patch). If the bug is critical, we will release the next version as soon as
possible.

1.4.4 Coding guideline

We basically adopt PEP8 <https://www.python.org/dev/peps/pep-0008/>_ as a style guide. You can check it with
flake8, which we can install by:

$ pip install flake8

and run with flake8 command.

In addition to PEP8, we use upper camel case (e.g. FooBar) for class names and snake case (e.g. foo_bar) for
function, method, variable and package names. Although we recommend developers to follow these rules as well, they
are not mandatory.

For documents, we follow the Google Python Style Guide and compile it with Napoleon, which is an extension of
Sphinx.

1.4.5 Testing guideline

Chainer Chemistry uses pytest as a unit-test framework. All unit tests are located in tests/ directory. We can run
tests with normal usage of pytest. For example, the following command runs all unit tests:

$ pytest tests

Some unit tests require GPUs, which are annotated with @pytest.mark.gpu. Therefore, you can skip them with
-m option:

$ pytest -m "not gpu" tests

If a develop who write a unit test that uses GPUs, you must anotate it with @pytest.mark.gpu.

Similarly, some unit tests take long time to complete. We annotated them with @pytest.mark.slow and can skip
them with -m option:

$ pytest -m "not slow" tests
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Any unit test that uses GPUs muct be annotated with @pytest.mark.slow.

We can skip both GPU and slow tests with the following command:

$ pytest -m "not (gpu or slow)" tests

1.4.6 Terminology

In the context of machine learning, especially chemoinformatics, we use several terms such as feature, feature vectors,
descriptor and so on to indicate representation of inputs. To avoid disambiguity and align naming convention within
the library code, we use these terms in the following way:

• Feature is a representation of a sample of interest (typically molecules in Chainer Chemistry).

• Label is a target value of we want to predict.

• Input feature is a representation of a sample from which we want to predict the target value.

For example, consider a suepervised learning task whose dataset consisting of input-output pairs ((x_1, y_1),
..., (x_N, y_N)), where N is the number of samples. In Chainer Chemistry x_i` and ``y_i are called
input feature and label, respectively and a pair of (x_i, y_i) is feature for each i.

1.4.7 Relation to Chainer

Chainer is a deep learning framework written in Python that features dynamic computational graph construction (the
“define-by-run” paradigm) for flexible and intuitive model development. As the name indicates, Chainer Chemistry is
an extension library of Chainer built on top of it. The core development team members of Chainer and that of Chainer
Chemistry work together tightly.

1.5 API Reference

1.5.1 Dataset

Converters

chainer_chemistry.dataset.converters.
concat_mols

Indexers

chainer_chemistry.dataset.indexer.
BaseIndexer
chainer_chemistry.dataset.indexer.
BaseFeatureIndexer
chainer_chemistry.dataset.indexers.
NumpyTupleDatasetFeatureIndexer

Parsers
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chainer_chemistry.dataset.parsers.
BaseParser
chainer_chemistry.dataset.parsers.
CSVFileParser
chainer_chemistry.dataset.parsers.
SDFFileParser
chainer_chemistry.dataset.parsers.
DataFrameParser
chainer_chemistry.dataset.parsers.
SmilesParser

Preprocessors

Base preprocessors

chainer_chemistry.dataset.
preprocessors.BasePreprocessor
chainer_chemistry.dataset.
preprocessors.MolPreprocessor

Concrete preprocessors

chainer_chemistry.
dataset.preprocessors.
AtomicNumberPreprocessor
chainer_chemistry.dataset.
preprocessors.ECFPPreprocessor
chainer_chemistry.dataset.
preprocessors.GGNNPreprocessor
chainer_chemistry.dataset.
preprocessors.NFPPreprocessor
chainer_chemistry.dataset.
preprocessors.SchNetPreprocessor
chainer_chemistry.dataset.
preprocessors.WeaveNetPreprocessor

Utilities

chainer_chemistry.
dataset.preprocessors.
MolFeatureExtractionError
chainer_chemistry.dataset.
preprocessors.type_check_num_atoms
chainer_chemistry.
dataset.preprocessors.
construct_atomic_number_array
chainer_chemistry.dataset.
preprocessors.construct_adj_matrix
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Splitters

chainer_chemistry.dataset.splitters.
RandomSplitter
chainer_chemistry.dataset.splitters.
StratifiedSplitter
chainer_chemistry.dataset.splitters.
ScaffoldSplitter

1.5.2 Datasets

Dataset implementations

chainer_chemistry.datasets.
NumpyTupleDataset

Dataset loaders

chainer_chemistry.datasets.tox21.
get_tox21
chainer_chemistry.datasets.qm9.
get_qm9
chainer_chemistry.datasets.molnet.
get_molnet_dataset
chainer_chemistry.datasets.molnet.
get_molnet_dataframe

1.5.3 Functions

Function implementations

chainer_chemistry.functions.matmul
chainer_chemistry.functions.
mean_squared_error
chainer_chemistry.functions.
mean_absolute_error

1.5.4 Iterators

Iterator Implementations

chainer_chemistry.iterators.
BalancedSerialIterator
chainer_chemistry.iterators.
IndexIterator
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1.5.5 Links

Link implementations

chainer_chemistry.links.EmbedAtomID
chainer_chemistry.links.GraphLinear

1.5.6 Models

Model implementations

chainer_chemistry.models.NFP
chainer_chemistry.models.GGNN
chainer_chemistry.models.MLP
chainer_chemistry.models.SchNet
chainer_chemistry.models.WeaveNet

Wrapper models

chainer_chemistry.models.
BaseForwardModel
chainer_chemistry.models.Classifier
chainer_chemistry.models.Regressor

1.5.7 Utilities

1.5.8 Training

Extensions

chainer_chemistry.training.
extensions.batch_evaluator.
BatchEvaluator
chainer_chemistry.training.
extensions.roc_auc_evaluator.
ROCAUCEvaluator
chainer_chemistry.training.
extensions.prc_auc_evaluator.
PRCAUCEvaluator
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